Our Lady of Pillar Convent School, Jodhpur

Physics Lab Manual Readings

&

Practical File Writing Instructions

X - Science

Total Experiments in Physics to be written in Practical File = 07

² X Physics (Science) Lab Manual Readings

Format of Writing Physics Experiments in the File:

LHS (Blank side: Pencil Work)	RHS (Ruled Side: Pen Work)
Experiment Number	Date
Circuit Diagram/Ray Diagram	Experiment Number
Observation	Aim
Calculation	Apparatus
Result	Theory (In short i.e. 2 to3 lines)
	Procedure
	Precautions (2 points)
	Sources of error (2 points)

³ X Physics (Science) Lab Manual Readings

 Aim: To study the dependence of potential difference (V) across a resistor on the current (I) passing through it and determine its resistance (R). Also plot a graph between V and I. Observation:

> Range of ammeter = 0-3 A Least count of ammeter = 0.1 A Zero error of ammeter = 0 A Range of voltmeter = 0-3 V Least count of voltmeter = 0.1 V Zero error of voltmeter = 0 V

S.No.	Reading of voltmeter		Reading of	Resistance	
	V (volt)		I (ampere)		$\mathbf{R} = \mathbf{V}/\mathbf{I}(\mathbf{\Omega})$
	Observed	Corrected	Observed	Corrected	
1	0.5	0.5	0.5	0.5	1
2	1	1	1	1	1
3	1.5	1.5	1.5	1.5	1
4	2	2	2	2	1

Calculation:

a)
$$R = V/I = 0.5/0.5 = 1 \Omega$$

b) $R_{\text{mean}} = (R_1 + R_2 + R_3 + R_4)/4 = (1 + 1 + 1)/4 = 1 \Omega$

Graph: (Note: Take a full page A4 size graph paper and plot the following graph and stick the graph paper in the practical file)

Scale:

X axis: 2 cm = 0.5 V

Y axis: 2 cm = 0.5 A

⁴ X Physics (Science) Lab Manual Readings

2) Aim: To determine the equivalent resistance of two resistors, when connected in series combination.

Observation:

Range of ammeter = 0-3 A

Least count of ammeter = 0.1 A

Zero error of ammeter = 0 A

Range of voltmeter = 0-3 V

Least count of voltmeter = 0.1 V

Resistor used	Observations	Voltmeter reading (volt)	Ammeter reading (ampere)	$R = V/I$ (Ω)	Mean value of resistance (Ω)
	(a)	0.2	0.2	1	
R_1	(b)	0.4	0.4	1	1
	(c)	0.6	0.6	1	
	(a)	0.2	0.2	1	
R_2	(b)	0.4	0.4	1	1
	(c)	0.6	0.6	1	
	(a)	0.2	0.1	2	
$R_{s} = R_{1} + R_{2}$	(b)	0.4	0.2	2	2
	(c)	0.6	0.3	2	

Zero error of voltmeter = 0 V

Calculations:

- **a**) Mean value of $R_1 = 1 \Omega$
- **b**) Mean value of $R_2 = 1 \Omega$
- c) Equivalent value of series combination:
 - By calculation, $R_s = R_1 + R_2 = 1 + 1 = 2 \Omega$
 - By experiment, $R_s' = 2 \Omega$
 - Difference in both values, $R_s R_s' = 2 2 = 0 \Omega$
- **3) Aim:** To determine the equivalent resistance of two resistors, when connected in parallel combination.

Observation:

Range of ammeter = 0-3 A Least count of ammeter = 0.1 A Zero error of ammeter = 0 A Range of voltmeter = 0-3 V Least count of voltmeter = 0.1 V Zero error of voltmeter = 0 V

⁵ X Physics (Science) Lab Manual Readings

Resistor used	Observations	Voltmeter reading (volt)	Ammeter reading (ampere)	$\begin{array}{c} \mathbf{R} = \mathbf{V}/\mathbf{I} \\ (\Omega) \end{array}$	Mean value of resistance (Ω)
	(a)	0.2	0.2	1	
\mathbf{R}_1	(b)	0.4	0.4	1	1
	(c)	0.6	0.6	1	
	(a)	0.2	0.2	1	
R_2	(b)	0.4	0.4	1	1
	(c)	0.6	0.6	1	
	(a)	0.2	0.4	0.5	
$R_p = \frac{R1R2}{R1+R2}$	(b)	0.4	0.8	0.5	0.5
	(c)	0.6	1.2	0.5	

Calculations:

- **a**) Mean value of $R_1 = 1 \Omega$
- **b**) Mean value of $R_2 = 1 \Omega$
- c) Equivalent value of parallel combination:
 - By calculation, $R_p = \frac{R1R2}{R1+R2} = 0.5 \Omega$
 - By experiment, $R_p' = 0.5 \Omega$
 - Difference in both values, $R_p R_p' = 0.5 0.5 = 0 \Omega$
- 4) Aim: To determine the focal length of concave mirror by obtaining the image of distant object.

Observations:

Name of the distant object	Distance between the states	Mean focal length of concave mirror	
	In (cm)	In (m)	In (m)
Tree	-18.8	-0.188	
Building	-19.1	-0.191	-0.191
Tower	-19.5	-0.195	

Calculation:

- **a**) Focal length for first object $f_1 = -0.188$ m
- **b**) Focal length for second object $f_2 = -0.191$ m
- c) Focal length for third object $f_3 = -0.195$ m
- **d**) Mean focal length = $-(f_1+f_2+f_3)/3 = -(0.188+0.191+0.195)/3 = -0.191 \text{ m}$

⁶ X Physics (Science) Lab Manual Readings

5) Aim: To trace the path of a ray of light passing through a rectangular glass slab for different angles of incidence. Measure the angle of incidence, angle of refraction, angle of emergence and interpret the result.

Observation:

S.No.	Angle of incidence	Angle of refraction	Angle of emergence	
	i	r	е	
1	30°	20°	29°	
2	45°	28°	42°	
3	60°	35°	57°	

Calculation:

- a) Angle of deviation, $\delta_1 = i_1 e_1 = 30^{\circ} 29^{\circ} = 1^{\circ}$
- **b**) Angle of deviation, $\delta_2 = i_2 e_2 = 45^{\circ} 42^{\circ} = 3^{\circ}$
- c) Angle of deviation, $\delta_3 = i_3 e_3 = 60^{\circ}-57^{\circ} = 3^{\circ}$
- 6) Aim: To trace the path of the rays of light through a glass prism.

Observation:

S.No.	Angle of incidence	Angle of deviation
	i	δ
1	35°	54°
2	45°	47°
3	55°	52°
4	65°	65°

Calculation:

a) Mean value of angle of incidence,

 $i = (i_1 + i_2 + i_3 + i_4)/4 = (35^\circ + 45^\circ + 55^\circ + 65^\circ)/4 = 50^\circ$

b) Mean value of angle of deviation,

 $\delta = (\delta_1 + \delta_2 + \delta_3 + \delta_4)/4 = (54^{\circ} + 47^{\circ} + 52^{\circ} + 65^{\circ})/4 = 54.5^{\circ}$

7 X Physics (Science) Lab Manual Readings

7) Aim: To find the image distance for varying object distances in case of a convex lens.

Observation:

- **a**) Approximate focal length of thin convex lens, f = 15 cm
- **b**) Height of candle flame/object needle, h = 5 cm

Position of optical centre of lens	Position of candle/object needle	Position of screen of other side of lens	Distance between lens and candle	Distance between lens and screen	Height of image	Magnification
L (cm)	O (cm)	S (cm)	u = -(L-O) (cm)	v = S-L (cm)	h' (cm)	h'/h
50	25	89	-25	39	-8	-1.6
50	10	77	-40	27	-3.2	-0.64